

What Happens on a Power Change?

- The high Σ_a for neutrons means xenon burnout changes a lot when flux changes. $[R_a = \Sigma_a \phi]$
- When power increases, the rate of burnout of Xe-135 increases faster than the steady I-135 decay can replenish it.
 - Xenon concentration drops, core reactivity increases
- When power decreases, steady I-135 decay produces more Xe-135 than can be burned out in the lower flux.
 - Xenon concentration increases, core reactivity drops

The Tank Diagram

- The tank diagram shows an "analogue computer" for calculating the quantities of xenon-135 and iodine-135
- It can be used to derive differential equations for the Xe and I concentrations
- It can also be used directly as the basis for a numerical computation
- We will use it to derive a variety of quantities that characterize the buildup and transient positive feedback from xenon

For Reference

 $\lambda_{\chi_0} = 2.11 \ 10^{-5} \ s^{-1}$ (G.E. Nuclear Chart 1996)

 $\sigma_a^{X_a} = 3.5 \times 10^6 \text{ b} = 3.5 \ 10^{-18} \text{ cm}^2$ (New Transent value is 3.1 10⁻¹⁸ cm2)

γ₁ = 6.3% (New Transent value = 6.4 % for equilibrium fuel & 6.3% for U-235 fissions.)

 $\gamma_{Xe} = 0.3\%$ (New Transent value ≈ 0.6 % for equilibrium fuel & 0.24% for U-235 fissions.)

 $\Sigma_{\rm f}$ 0.1 cm⁻¹ (fresh CANDU fuel) $\Sigma_{\rm f} \approx 0.089$ cm⁻¹ (equilibrium fuelling) is burnup dependent $\phi_{RR} = 9.1 \times 10^{13}$ n cm⁻² s⁻¹ (fuel flux at full power/equilibrium fuelling: BNGSB Xe predictor)

 $\phi_{FF} = 1.0 \times 10^{14}$ n cm⁻² s⁻¹ is a convenient value for calculation, and close enough.

- time constants for $\phi_{inst} =$ full power flux (for equivalent half lives multiply by ln2 = 0.693):
- $(\sigma_{*}^{Xe}\phi_{\text{final}}+\lambda_{Xe})^{-1}\approx 49.1 \,\text{m in utes}$
- $\left[\sigma_{\bullet}^{\chi_{\bullet}}\phi_{\text{final}}-\left(\lambda_{1}-\lambda_{\chi_{\bullet}}\right)\right]^{-1}\approx 53.7 \text{ min utes}$
- $1/\lambda_{\rm f} = 569$ minutes
- $1/\lambda_{\gamma_{0}} = 790$ minutes $1/(\lambda_{1} - \lambda_{2}) = 2032 \text{ min} = 33.9 \text{ hrs}$

(half time 37 minutes) (half life 6.6 hours) (half life 9.1 hours) (half time 23.5 hours)

(half time 34 minutes)

To convert from number concentration to mk worth of xenon-135, take 1 mk $\approx 6 \times 10^{16}$ atoms

Equilibrium Steady State Conditions for Xenon and Iodine

- Calculate the fraction of mass 135 fission fragments that are xenon and the fraction that are iodine.
- Show that the % of production of xenon once equilibrium is achieved is almost 95% from iodine decay and 5% direct fission production.
- Show that the removal of xenon at normal full power flux conditions is more than 90% by burnout and almost 10% by decay.

Equilibrium Iodine

 Develop formula for equilibrium iodine concentration and show that equilibrium iodine concentration is proportional to steady state flux.

$$N_{I eq} = \gamma_I \Sigma_f \phi / \lambda$$

- Notice that equilibrium iodine is proportional to flux (neutron power level)
 - if the reactor operates at 60% F.P. iodine builds to about 0.6 of 322 mk

• Equate the two inflow terms in the xenon tank to the two outflow terms to get the text equation.

$$N_{Xe(eq)} = \frac{\left(\gamma_{I} + \gamma_{xe}\right)}{\lambda_{xe} + \sigma_{a}^{xe}\phi} \Sigma_{f}\phi = \frac{\left(\gamma_{I} + \gamma_{xe}\right)}{\sigma_{a}^{xe}\phi\left(1 + \frac{\lambda_{xe}}{\sigma_{a}^{xe}\phi}\right)} \Sigma_{f}\phi = \frac{\left(\gamma_{I} + \gamma_{xe}\right)}{\left(1 + \frac{\lambda_{xe}}{\sigma_{a}^{xe}\phi}\right)} \frac{\Sigma_{f}}{\sigma_{a}^{xe}}$$

 \mathbf{D}

Xenon After a Trip from
Equilibrium Steady State
$$N_{Xe}(t) = N_{Xe(eq)}e^{-\lambda_{Xe}t}$$
$$+ \frac{\lambda_{I}}{\lambda_{I} - \lambda_{Xe}} \cdot N_{I(eq)} \cdot \left\{ e^{-\lambda_{Xe}t} - e^{-\lambda_{I}t} \right\}$$
$$\cdot \underset{simple}{Its} \frac{Xe(t) = 28e^{-\lambda_{Xe}t}}{Xe(t) = 28e^{-\lambda_{Xe}t}}$$
$$in_{numbers} + 3.6 \times 322 \cdot \left\{ e^{-\lambda_{Xe}t} - e^{-\lambda_{I}t} \right\}$$

Time to the Peak

- It is straightforward, but not necessarily easy, to take a time derivative of the xenon transient equation and set the result to zero
- zero slope implies that at some time after the transient starts, with Xe increasing and I decreasing, the production and decay of Xe will be equal
- This is the peak, and the equation can be solved for time to the peak.

Poison Out Time

- Analysis of the causes of the trip takes more than the decision and action time
 - not in the old days though
- The reactor poisons out
- It takes 35 to 40 hours (for a trip from full power) for the transient to pass and xenon to drop into the range where adjuster removal could make the reactor critical again
- This is called the *Poison Out Time*

Smaller Transients

- Any power change at high power results in a transient
- The size of transient is smaller the smaller the power change
 - the smaller the steady state Iodine difference
- The time to the peak is less for smaller transients.
- On a power rise, xenon *decreases* transiently

Large Size

High Flux and Large Size

 For a noticeable xenon transient to occur, the removal of xenon by burnout must be significantly higher than the removal by decay

- for CANDU this is somewhere near 25% F.P.
- spatial control is phased in between 15% & 25%
- For a physically large core, what happens in one region has little direct affect on another region
 - size bigger (by × 6 or so) the distance an average neutron takes to slow down and diffuse (≈ 40 cm.)
- CANDU fits both criteria

Time Dependence

 in the increasing Xe region flux drops, iodine production drops, and many hours later the high Xe level cannot be sustained and it starts dropping

- once it starts dropping, the feedback effect makes it drop even more, driving it down again
- In the decreasing xenon region flux is rising, fission rate increasing and I production going up. Eventually the extra I makes enough Xe to reverse the direction

- again, positive feedback forces Xe levels up & flux down

Liquid Zone Control to the Rescue

- The cycling itself is hard on equipment, with varying thermal expansions and contractions fighting each other at mechanical joints
- The peak fluxes, and peak channel and bundle powers can be unacceptably high
 - Which explains why instruments are distributed in core to measure differences between zones
 - and reactivity devices (the liquid zones) are distributed in core to offset these differences before they get out of hand

Promethium-149/Samarium-149

20

- ◆ Its simpler because Samarium-149 is stable
 - the decay terms are zero
- The difference in parameters produces some surprising differences.

Equilibrium Samarium is Not
Flux Dependent (AT ALL)

$$\lambda_{Pm} N_{Pm(eq)} = \gamma_{Pm} \Sigma_f \phi = N_{Sm(eq)} \sigma_a^{Sm} \phi$$

• so
• $N_{Sm(eq)} = (\gamma_{Pm}) \frac{\Sigma_f}{\sigma_a^{Sm}}$

Samarium Buildup after a Trip

$$N_{Sm}(t) = N_{Sm(eq)} \left[1 + \frac{\sigma_a^{Sm} \phi}{\lambda_{Pm}} (1 - e^{-\lambda_{Pm}t}) \right]$$

$$N_{Sm}^{peak} = N_{Sm(eq)} \left[1 + \frac{\sigma_a^{Sm} \phi}{\lambda_{Pm}} \right]$$
• Samarium doesn't decay, so whatever is held
up in the precursor bank adds to the total
• For $\phi = \frac{\lambda_{Pm}}{\sigma_*^{Sm}}$ the peak is double the equilibrium
value of 5.1: i.e. about 10.2 mk

